Aberrant interaction of calmodulin with the ryanodine receptor develops hypertrophy in the neonatal cardiomyocyte.

نویسندگان

  • Jaya P Gangopadhyay
  • Noriaki Ikemoto
چکیده

We have shown previously that the inter-domain interaction between the two domains of RyR (ryanodine receptor), CaMBD [CaM (calmodulin)-binding domain] and CaMLD (CaM-like domain), activates the Ca(2+) channel, and this process is called activation-link formation [Gangopadhyay and Ikemoto (2008) Biochem. J. 411, 415-423]. Thus CaM that is bound to CaMBD is expected to interfere the activation-link formation, thereby stabilizing the closed state of the channel under normal conditions. In the present paper, we report that, upon stimulation of neonatal cardiomyocytes with the pro-hypertrophy agonist ET-1 (endothelin-1), CaM dissociates from the RyR, which induces a series of intracellular events: increased frequency of Ca(2+) transients, translocation of the signalling molecules CaM, CaMKII (CaM kinase II) and the transcription factor NFAT (nuclear factor of activated T-cells) to the nucleus. These events then lead to the development of hypertrophy. Importantly, an anti-CaMBD antibody that interferes with activation-link formation prevented all of these intracellular events triggered by ET-1 and prevented the development of hypertrophy. These results indicate that the aberrant formation of the activation link between CaMBD and CaMLD of RyR is a key step in the development of hypertrophy in cultured cardiomyocytes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Buckwheat Rutin Inhibits AngII-induced Cardiomyocyte Hypertrophy via Blockade of CaN-dependent Signal Pathway

Buckwheat rutin has been found to be able to inhibit angiotensin II (AngII) - induced hypertrophy in cultured neonatal rat cardiomyocytes, but the mechanism remains uncertain. In this study, myocardial hypertrophy model was made by adding AngII to the medium of cardiac myocytes of neonatal rats, meanwhile, different concentrations of buckwheat rutin were applied to observe their effects. Intrac...

متن کامل

Buckwheat Rutin Inhibits AngII-induced Cardiomyocyte Hypertrophy via Blockade of CaN-dependent Signal Pathway

Buckwheat rutin has been found to be able to inhibit angiotensin II (AngII) - induced hypertrophy in cultured neonatal rat cardiomyocytes, but the mechanism remains uncertain. In this study, myocardial hypertrophy model was made by adding AngII to the medium of cardiac myocytes of neonatal rats, meanwhile, different concentrations of buckwheat rutin were applied to observe their effects. Intrac...

متن کامل

Heart Ryanodine Receptor Type 2 Is Required for the Development of Pressure Overload-Induced Cardiac Hypertrophy

Ryanodine receptor type 2 (RyR-2) mediates Ca release from sarcoplasmic reticulum and contributes to myocardial contractile function. However, the role of RyR-2 in the development of cardiac hypertrophy is not completely understood. Here, mice with or without reduction of RyR-2 gene (RyR-2 / and wild-type, respectively) were analyzed. At baseline, there was no difference in morphology of cardio...

متن کامل

Ryanodine receptor type 2 is required for the development of pressure overload-induced cardiac hypertrophy.

Ryanodine receptor type 2 (RyR-2) mediates Ca(2+) release from sarcoplasmic reticulum and contributes to myocardial contractile function. However, the role of RyR-2 in the development of cardiac hypertrophy is not completely understood. Here, mice with or without reduction of RyR-2 gene (RyR-2(+/-) and wild-type, respectively) were analyzed. At baseline, there was no difference in morphology of...

متن کامل

MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes.

Calcium signaling is a central regulator of cardiomyocyte growth and function. Calmodulin is a critical mediator of calcium signals. Because the amount of calmodulin within cardiomyocytes is limiting, the precise control of calmodulin expression is important for the regulation of calcium signaling. In this study, we show for the first time that calmodulin levels are regulated posttranscriptiona...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 438 2  شماره 

صفحات  -

تاریخ انتشار 2011